Membangkitkan Sebuah Variabel Acak Binomial

Misalkan kita ingin membangkitkan nilai dari sebuah variabel acak X, binomial (n,p). X sedemikian sehingga : P\left \{ X=i \right \}=\frac{n!}{i!(n-i)!}p^{i}(1-p)^{n-i}, \;\;\;\;\;i=0,1, \cdots ,n

Untuk membangkitkan variabel acak binomial, kita akan menggunakan metode transformasi kebalikan (inverse transform method) dengan membuat penanda rekursif sebagai berikut : P\left \{ X=i+1 \right \}=\frac{n-i}{i+1}\frac{p}{1-p}P\left \{ X=i \right \}

Dengan i menunjukkan nilai yang diiginkan, pr = P{X= i} probabilitas dimana X sama dengan i, dan F = F(i) sebagai probabilitas dimana X lebih kecil atau sama dengan i, algoritma dapat disusun sebagai berikut :

STEP 1: Bangkitkan bilangan acak U

STEP 2: c=p/(1-p),i=0,pr=(1-p)^{n},F=pr

STEP 3: Jika U < F, tentukan X = i, stop.

STEP 4:pr = \left [ c(n-i)/(i+1) \right ]pr, F=F+pr,i=i+1

STEP 5: Lanjut ke STEP 3

[ Sumber : Simulation, Sheldon M. Ross]

Membangkitkan Sebuah Variabel Acak Poisson

Variabel acak X adalah Poisson dengan mean \( \lambda \)  jika

p_{i}=P\left \{ X=i \right \}=e^{-\lambda} \frac{\lambda ^{i}}{i!} \;\;\;\;\;\; i=0,1,\cdots

Kunci penggunaan metode transformasi kebalikan (inverse transform method) dalam rangka  untuk membangkitkan variabel acak seperti ini adalah dengan mengikuti penanda di bawah ini :

\120dpi p_{i+1}= \frac{\lambda }{i+1} p_{i}, \;\;\;\;\;\; i\geq 0

Berdasarkan pada rumus rekursif untuk menghitung probabilitas Poisson dengan mean ? di atas, maka kita dapat menggunakan algoritma berikut ini :

STEP 1: Bangkitkan bilangan acak U

STEP 2: \120dpi \inline i=0, p=e^{-\lambda },F=p

STEP 3: Jika U<F, jadikan X=i dan berhenti

STEP 4: \120dpi \inline p=\lambda p / \left ( i+1 \right ), F = F + p, i = i+1.

STEP 5: Go to STEP 3

[ source : Simulation, Sheldon M. Ross ]